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A Joint Receiver–Decoder for Convolutionally Coded
Binary Phase-Shift Keying (BPSK)

J. Hamkins1

This article presents a method to jointly estimate phase and data from a convo-
lutionally coded binary phase-shift keying (BPSK) signal with random phase noise
and additive white Gaussian noise (AWGN). The joint receiver–decoder success-
fully decodes fully suppressed carrier signals in harsh phase-noise environments. A
complete description is given of the software implementation, including the gen-
eration of statistically accurate phase-noise samples. Numerical results are given
for the NASA standard (7,1/2) convolutional code and frequency-flicker-dominated
phase noise. For phase-noise levels of −10.58, −1.55, and 7.48 dB rad 2/Hz at a
1-Hz offset, a data rate of 40 b/s, and a bit-error rate (BER) of 0.01, the joint
receiver–decoder saves 3 to 4.25 dB of power over a nonjoint approach.

I. Introduction

This article presents a method to perform phase tracking and data decoding of a convolutionally
coded binary phase-shift keying (BPSK) signal corrupted by random phase noise and additive white
Gaussian noise (AWGN). Current receivers and decoders accomplish these two tasks in an isolated manner:
the receiver performs phase tracking, and the decoder produces the decoded data sequence. The sole
communication between the conventional receiver and decoder is via a sequence of soft symbols at the
output of the receiver. In contrast, the technique given in this article estimates the phase and data jointly,
which improves both the phase estimate and the decoded data sequence.

Some amount of optimality can be claimed for the isolated-blocks architecture, because the phase-
tracking loop is motivated by the maximum a posteriori (MAP) estimate, and a Viterbi decoder also
gives the MAP estimate of the bits. However, the optimality of the phase-tracking loop is based on the
assumption that transmitted symbols are independent, and the optimality of the Viterbi decoder is based
on assumptions of perfect timing and phase synchronization. Neither assumption is true, especially in
the high phase-noise environments that occur at low data rates.

In these harsh cases, it is possible to improve system performance with an integrated architecture
that jointly tracks phase and decodes data. The phase tracker can take advantage of the structure of
the channel code, and the decoder can take advantage of improved tracking capability. Further im-
provements might also be obtained by moving the external symbol-synchronization block into the joint
receiver–decoder. This article does not tackle this issue, and assumes perfect timing.

1 Communications Systems and Research Section.
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Each of the various conventional-receiver phase-tracking loops utilizes slightly different amounts of
information from the modulation sidebands [5], as summarized in Table 1. The decision-directed loop
is a joint receiver–decoder, because it estimates both phase and data, but its feedback is a sequence
of memoryless, symbol-by-symbol decisions with no operational dependence on the underlying error-
correcting code. The other loops operate without making any data decisions at all: a phase-locked loop
(PLL) requires an unmodulated residual carrier signal; the MAP-based integrate-and-dump loops average
the phase estimate over the “unknown” data; and the squaring and Costas loops nullify the modulation
in the sidebands by squaring (or effectively squaring) the signal.

Table 1. Properties of various phase-tracking methods.

Operable Uses carrier Performance Uses Uses under-
Tracking without information maximizable a posteriori lying error-
method residual in modulation without SNR bit correcting

carrier sidebands estimate probabilities code

PLL No No Yes No No

Integrate-and-dump loop Yes Yes No No No

Squaring loop Yes Yes Noa No No

Costas loop Yes Yes Noa No No

Decision-directed loop Yes Yes Noa Yes No

Joint receiver–decoder Yes Yes Yes Yes Yes

a Ideal filter coefficients depend on SNR, but performance is often insensitive to SNR mismatch.

The joint receiver–decoder uses a trellis-based algorithm to jointly estimate the phase and data. Cor-
responding to each state of the trellis is a hypothesized data sequence leading to that state, and also a
hypothesized phase estimate conditioned on that data sequence. This conditioning is the key advantage
over the other loops. When conditioned on the correct data path, the phase-estimate performance of any
loop of the type described above is the same as for a pilot tone with no data modulation. Furthermore,
the phase estimate can be updated one or more times per symbol; there is no requirement that the phase
estimate remain constant throughout the constraint length of the code. As a result, the joint receiver–
decoder offers the potential to operate on a suppressed-carrier signal in phase-noise regions too harsh for
a conventional receiver and decoder, and to do so without incurring a squaring loss typified by loops that
remove modulation by squaring the signal.

II. Preliminaries

A. The Signal Model

We consider a noiseless received signal of the form

s(t) = A sin [ωct + θ(t) + βm(t)] (1)

where θ(t) is the randomly varying phase, ωc is the carrier frequency, β is the modulation index or
modulation angle, m(t) =

∑
k ckp(t− kT ) is the convolutionally encoded waveform, ck ∈ {−1,+1}, and

p(t) is a rectangular pulse of length T . We do not consider subcarrier modulation in this article. Note
that when β = π/2 the signaling is antipodal, reducing to an ordinary suppressed-carrier BPSK signal.
The total received signal is
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r(t) = s(t) + n(t)

where n(t) is an AWGN process with one-sided power spectral density N0.

1. Complex Baseband. For convenience, we work primarily in complex baseband, by defining in
the usual way s(t) 4= Re[s̃(t)ejωct] and n(t) 4= Re[ñ(t)ejωct]. Using these definitions and Eq. (1), we have

s̃(t) = − jAej[θ(t)+βm(t)] (2)

ñ(t) = nc(t) + jns(t)

r̃(t) = s̃(t) + ñ(t)

In this representation, the noise components nc(t) and ns(t) are independent white Gaussian noise pro-
cesses with one-sided power spectral density Snc

(f) = Sns
(f) = 2N0. For the complex baseband signals,

the inner product is defined by 〈x, y〉 4=
∫

T
x(t)y(t)∗dt, where ∗ denotes the complex conjugate. Also,

‖x‖2 4= 〈x, x〉 =
∫

T
x(t)x(t)∗dt =

∫
T
|x(t)|2dt.

2. Conversion to Discrete Time. A sampled system is used. A matched filter (MF) at the front
end of the receiver has a continuous-time input and produces a discrete-time output used by the tracking
loops, which are implemented digitally.

The continuous-time received signal r̃(t) = s̃(t) + ñ(t) is the input to a complex MF, as shown in
Fig. 1. Let s̃0(t) = −jA denote the signal s̃(t) with no modulation or phase offset present. The output
of the MF for the kth transmitted symbol is

〈r̃, s̃0〉 =
∫ kT

(k−1)T

r̃(t)jAdt = A2ejβck

∫ kT

(k−1)T

ejθ(t)dt + N (3)

where N = NR + jNI , and where NR and NI each has a distribution of N(0, N0A
2T ). Because a

rectangular pulse shape is used, the MF does nothing more than integrate and dump.

ò
r (t )
~

s 0(t )*
~ kT

r , s 0
~ ~

Fig. 1.  A matched filter sampled once per symbol.

B. The Channel Code

The coded bits {ck} are obtained from an uncoded information stream, {ak}, by the standard NASA
rate-1/2, constraint-length-7 convolutional code shown in Fig. 2. This is the convolutional code with
generators (133)oct and (117)oct, where the most significant bit represents D6, i.e.,
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g1(D) = 1 + D2 + D3 + D5 + D6

g2(D) = 1 + D + D2 + D3 + D6

We have striven to be consistent with the literature, but there are others that use different octal repre-
sentations for generators. For example, in [4], the least significant bit represents D6.

D D D D D D

Fig. 2.  NASA standard (7,1/2) convolutional code.

C. The Maximum-Likelihood (ML) Receiver

The joint maximum-likelihood (ML) estimate for the kth bit of an uncoded signal and the unknown
phase is given by

(
ĉML
k , θ̂(t)ML

)
4= arg max

ck,θ(t)
p (r(t)|θ(t), ck)

Using a Karhunen–Loeve expansion for r(t), it follows (see, e.g., [8, p. 335]) that

p (r(t)|θ(t), ck) = C exp

[
−1
N0

∫ kT

(k−1)T

(r(t)− s(t))2dt

]

or, in complex baseband,

p (r(t)|θ, ck) = C exp
[ −1
2N0
‖r̃ − s̃‖2

]
(4)

Equation (4) is referred to as the likelihood function. Expanding,

‖r̃ − s̃‖2 = 〈r̃ − s̃, r̃ − s̃〉 = ‖r̃‖2 − 2Re〈r̃, s̃〉+ ‖s̃‖2 (5)

Plugging Eq. (5) into Eq. (4), taking the logarithm, and discarding terms that do do not depend on ck,
we have the joint ML estimate of the phase and data:

(
ĉML
k , θ̂(t)ML

)
= arg max

ck,θ(t)
Re〈r̃, s̃〉 (6)
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The maximum can be found by computing 〈r̃, s̃〉 under different hypotheses for ck and θ(t) and choosing
the maximum. This is accomplished in practice by conditioning on a value ck first, and using the best
resulting phase estimate under that hypothesis.

1. Single-Sample-per-Symbol Receiver. For the kth symbol and hypothesized phase θ̂(t) and
data ĉk, we have hypothesized signal s̃(t) = s̃0e

j[θ̂(t)+βĉk]. If the true phase θ(t) does not significantly
vary over a single symbol epoch, we may write θk

4= θ(t) for (k − 1)T ≤ t < kT and, thus,

〈r̃, s̃〉 = e−j[θ̂k+βĉk]〈r̃, s̃0〉 (7)

= A2T exp
[
−j(θk − θ̂k) + β(ck − ĉk)

]
+ Ne−j(θ̂k+ĉk) (8)

may be used in Eq. (6) to determine the ML estimates. Equation (7) demonstrates that the MF output
〈r̃, s̃0〉 is a sufficient statistic for ML detection.

2. Multiple-Samples-per-Symbol Receiver. If θ(t) varies significantly over the symbol epoch,
then estimating the phase once per symbol can result in a poorly performing receiver. To solve the
problem, we may sample the output of the MF m > 1 times during the integrating interval and compute
a phase estimate more than once per symbol. We choose m sufficiently large so that θ(t) may be approx-
imated as a constant, θk[i], within the ith interval of the kth symbol. The ith discrete sample of the kth
symbol at the output of the MF is denoted by

rk[i] 4=
∫ t1+T/m

t1

r̃(t)s̃0(t)∗dt =
A2T

m
ej[θk[i]+βck] + Nk[i] (9)

where t1 = (k − 1 + (i/m))T , and Nk[i] contains independent real and imaginary components, each
Gaussian and with variance N0A

2T/m. Thus, for a multiple-samples-per-symbol system,

〈r̃, s̃〉 =
m−1∑
i=0

rk[i]e−j(θ̂k[i]+βĉk) =
m−1∑
i=0

A2T

m
exp

[
j
(
θk[i]− θ̂k[i] + β(ck − ĉk)

)]
+ Nk[i]e−j(θ̂k[i]+βĉk) (10)

which can be plugged into Eq. (6) to obtain the ML phase and data estimates. Note that Eq. (10) is
identical to Eq. (7) in the case of m = 1, in which case rk[0] = 〈r̃, s̃0〉 and Nk[0] = N .

III. Phase Noise

This section describes a phase-noise model representative of real oscillators and an efficient method to
simulate the phase-noise process.

A. Phase-Noise Power Spectral Density (PSD)

The one-sided power spectral density (PSD) of oscillator phase is often modeled as [1]

S(f) =
S3

f3
+

S2

f2
+ S0 rad2/Hz (11)

The S3/f3 term is called frequency-flicker noise; the S2/f2 term is white frequency noise; and the S0 term
is white phase noise. If S3 > 0 or S2 > 0, then this model implies that the power of the signal is infinite,
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even within a small band about the zero frequency:
∫ c

0
S(f)df =∞. To avoid this problem, in this article

it is assumed that the model above is accurate only for frequencies above some lower frequency, fl.

Oscillator phase-noise characteristics are also commonly specified by L(f), which is defined as the ratio
of the phase-noise power in a 1-Hz-bandwidth sideband to the total signal power, at an offset of f Hz
from the carrier frequency. The normalized phase-noise power, L(f), is related to S(f) in the following
way [2]:

L(f) ≈ 10 log10

(
S(f)

2

)
(12)

See Appendix A for a more detailed discussion of this approximation. Equation (12) is valid only for
small levels of noise; however, Eq. (12) is often treated as a definition, and it will be used as such in this
article. The units of L(f) are dBc/Hz, or dB rad2/Hz.

B. Computer Generation of Phase Noise

The numerical results in this article are based on simulations using frequency-flicker-dominated phase
noise, in which all coefficients in Eq. (11) were set to zero except S3, which is scaled to the desired value.
For example, to achieve −13 dB rad2/Hz at a 1-Hz offset, we have S(f) = S3/f3 and set S3 so that
10 log10(S(f)/2) = −13 dB rad2/Hz at f = 1 Hz. In this example, S3 = 13 × 2 × 10−13/10, or 0.1002.
This is representative of the phase noise seen on the Cassini auxiliary oscillator.2

A C program was used to simulate the phase noise. The program allows specification S(f) in the
form of Eq. (11) and generates phase samples. The theoretical basis and implementation of this pro-
gram are discussed in Appendix B. Figure 3 shows the measured spectral density of computer-generated
phase-noise samples for two cases. In both cases, −20 dB rad2/Hz at a 1-Hz offset was desired. In one case,
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Fig. 3.  Measured PSDs of 100,000 computer-
generated phase-noise samples, compared with the
desired PSDs S (f ) ~ 1/f 3 and S (f ) ~ 1/f 2.
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2 A. Makovsky, “Effects of Cassini Aux Osc Phase Noise on Telemetry BER,” JPL Interoffice Memorandum 3391-94-100
(internal document), Jet Propulsion Laboratory, Pasadena, California, December 1994.
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the phase noise was assumed to be dominated by frequency-flicker noise, S(f) = S3/f3, and in the other
by white frequency noise, S(f) = S2/f2. Note the 30- and 20-dB-per-decade slopes, respectively. The
computer-generated phase samples accurately follow the desired spectrum down to −100 dBc/Hz.

Alternatively, the program can also calibrate the phase noise by scaling S(f) such that the variance
of the innovations sequence, i.e., the incremental variance between phase samples, is a given value. This
allows comparison with previous results3 that use a Gauss–Markov process for the phase noise.

IV. The Joint Receiver–Decoder

In a conventional receiver, incoming samples from a matched filter are fed into a single phase-recovery
loop and then into a correlator for each of the hypothesized data values, −1 and +1. In a convolutionally
coded system, the receiver outputs are used as partial branch metrics on any branch having the given
data hypothesis. This is shown in Fig. 4.

By contrast, the joint receiver–decoder uses per survivor processing (PSP) phase tracking within a
Viterbi decoder, as shown in Fig. 5. The PSP approach avoids averaging over unknown data, does not
incur a squaring loss, and allows for phase-estimate updates one or more times per symbol. It involves
computing a phase estimate at each state in the Viterbi trellis, taking full advantage of the strength of
the code in performing a strong type of data-aided phase tracking. The method is not the maximum-

r , s 0
~ ~
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-j qk

Re (  )

PARTIAL BRANCH
METRIC USED BY
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ck = 1
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ck = -1

e 
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ck = 1
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Fig. 4.  A conventional digital receiver for convolutionally coded BPSK.
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Fig. 5.  The joint receiver-decoder block for state i. There is such a block for each i = (1, . . . , n ).
Phase recovery uses the hypothesized data sequence leading to state i at time k.
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, . . . , c 
(i )

1 k
HYPOTHESIZED DATA SEQUENCE
LEADING TO STATE i

RECEIVER-DECODER BLOCK i

3 J. Hamkins, “PSP Phase-Tracking of Convolutionally Coded BPSK,” JPL Interoffice Memorandum 3315-99-02 (internal
document), Jet Propulsion Laboratory, Pasadena, California, September 1998.
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likelihood estimator, because the estimates and data are coupled, and the Viterbi algorithm excludes
certain data sequences; however, it should exhibit superior performance over uncoupled methods. For a
general explanation of Viterbi decoding of convolutional codes, see [8]; for PSP, see [10].

Here is how it works. At each state in the trellis, the Viterbi decoder stores an associated hypothesized
data sequence according to the surviving path to that state, as usual. This hypothesized data sequence
can be used to unmodulate the signal. If the hypothesized data sequence is the correct one, then the
data-wiped signal is a continuous-wave (CW) signal with phase noise and AWGN, trackable by a PLL or
other loop in the usual way.

For each incorrect surviving path, the phase estimate might not be accurate and indeed may be
significantly worse than a phase tracker based on averaging over unknown data. For the true data path,
however, the phase estimate will be better. Furthermore, the phase estimate at each state requires no
decoding delay, so updates from one trellis state to the next can track phases that vary somewhat rapidly.

A second and significant benefit of the approach is that the data-wiped signal is never squared, thereby
avoiding the “squaring loss” normally associated with tracking suppressed-carrier signals.

A. Phase Estimation

In principle, any phase-tracking method that can be used for a CW signal can be used within the joint
receiver–decoder. Because multiple instances of the tracker are required, there is a complexity limitation.
Most loops are simple enough that this is not a problem, however. In the following subsections, we describe
the implementation of a PLL, an open-loop MAP phase estimator, and a Kalman-filter estimator.

1. PLL. The phase-error variance (mean-squared phase error, in rad2) of the PLL is given by the
sum of the variance due to thermal noise and the variance due to the phase noise. Under the assumption
that the data wipe has been performed correctly, the suppressed-carrier signal becomes a CW signal with
carrier power equal to the original total signal power, Pt. Thus, the phase-error variance due to thermal
noise is given by

σ2
AWGN ≈

1
ρL

4=
BLN0

Pt
=

BL

Rd(Eb/N0)

where ρL is the loop signal-to-noise ratio (SNR), Rd is the data rate, and BL is the loop bandwidth. The
thermal-noise term is increasing in BL, which represents the fact that opening up the loop bandwidth
lets in more noise power to the loop.

The phase-error variance due to the phase noise is given by [3]

σ2
phase noise ≈

∫ ∞
0

S(f)|1−H(f)|2df

For a second-order underdamped PLL tracking of frequency-flicker-dominated noise, this has been shown
to be accurately approximated by σ2

phase noise = kS3/B2
L [3], with k = 8.7. The phase-noise term is

decreasing in BL, indicating that opening the loop bandwidth allows one to better track the dynamics of
the phase noise. As can be seen from Fig. 6, the approximations are extremely accurate throughout the
entire range of loop bandwidths. A discrepancy begins to appear as the loop bandwidth approaches the
Nyquist rate, as aliasing begins to occur.
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Fig. 6.  The simulated versus theoretical performance of a
second-order underdamped PLL on a CW signal with
-7.57 dB rad2/Hz at a 1-Hz offset and no AWGN, as a function
of loop bandwidth. The sample rate is Fs = 80 Hz.

The total phase-error variance is given by

σ2
φ
4= σ2

AWGN + σ2
phase noise ≈

BL

Rd(Eb/N0)
+

kS3

B2
L

(13)

The optimal loop bandwidth can be found by differentiating Eq. (13) and solving for BL. This gives

Bopt
L ≈

(
2RdkS3Eb

N0

)1/3

(14)

This optimal loop bandwidth is shown in Fig. 7 for a data rate of 40 b/s and phase-noise levels considered
in the numeric portions of the article.
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2. MAP Estimation. The classical derivation of the MAP estimate of the phase assumes that each
bit is unknown. Thus, the estimate involves an averaging over the two possibilities of the bit, −1 and
+1. When known data are hypothesized, a new MAP phase estimate emerges.

We now derive the MAP phase estimate following the general approach of [5], but accounting for data
that are now hypothetically known. Begin by assuming that the value of θ(t) remains constant over a
period of K bits, K ≥ 1. The MAP phase estimate is that value of θ that maximizes the conditional
density p(θ|r(t), c), where c = (co, · · · , cK−1). Using Bayes’ rule,

p(θ|r(t), c) =
p(θ|c)p(r(t)|θ, c)

p(r(t)|c)

We reasonably assume that θ and c are independent and that θ is uniformly distributed in [0, 2π), and,
thus, p(θ|c) and p(r(t)|c) are independent of θ. Hence, the MAP estimate is given by

θ̂MAP = arg max
θ

p(r(t)|θ, c)

That is, the MAP estimate is the same as the ML estimate. Following the analysis in Section II.C, it
follows that

θ̂MAP = arg max
θ

Re〈r̃, s̃〉 (15)

In a typical implementation, in which s̃ is not completely determined because c is unknown, the MAP
estimate is obtained from Eq. (15) by averaging over the possible values of c. When operating with
β = π/2 and equiprobable signals, it can be shown [8, p. 351] that this results in a MAP estimate of

θ̂MAP = arg max
θ

K∑
k=1

ln cosh

[
2A

N0

∫ kT

(k−1)T

r(t) cos(ωct + θ)dt

]
, in passband notation

= arg max
θ

K∑
k=1

ln cosh

[
A

N0
Im

∫ kT

(k−1)T

r̃(t)e−jθdt

]
, in complex baseband notation

Note that this estimate does not contain a reference to the data vector c. Also, it requires an external
estimate of the SNR, and the arg max may have to be accomplished by choosing among multiple correlator
outputs.

In contrast, the PSP MAP estimate is given by substituting a hypothesized m̂(t) into Eq. (2) and then
Eq. (15), which gives

θ̂MAP = arg max
θ

Re

∫ KT

0

r̃(t) exp
[
−j

(
θ − π

2
+ βm̂(t)

)]
dt (16)

A necessary condition for achieving the maximum is that the derivative of Eq. (16) with respect to θ be
zero, i.e.,
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Re

∫ KT

0

r̃(t)(−j) exp
[
−j

(
θ̂MAP − π

2
+ βm̂(t)

)]
dt = 0

After a few lines of simplification via trigonometric formulas, we obtain

θ̂MAP = − tan−1

[
Re

∫ KT

0
r̃(t)e−jβm̂(t)dt

Im
∫ KT

0
r̃(t)e−jβm̂(t)dt

]
(17)

This PSP MAP estimate should result in improved tracking because it is conditioned on a hypothesized
data sequence, does not require an external estimate of SNR, and can be implemented exactly with a
single complex baseband correlator.

3. Kalman-Filter Estimation. The MAP phase estimator of the previous subsection gives the
best performance possible with an observation interval of K bits, under the assumption that the phase
is constant within that interval. However, we are most interested in improving receiver performance for
rapidly varying phase-noise cases, in which the phase can be viewed as constant for only very short
intervals. Tracking loops or filters have the potential to do better than a one-shot MAP estimate if they
are able to make effective use of an observation interval longer than that in which the phase may be
accurately assumed to be constant.

One such method is a Kalman filter, which gives optimal mean-squared error (MSE) tracking perfor-
mance when the observable is linear in the phase error and the phase varies according to a Gauss–Markov
random sequence. In this model, the phase is constant within a single codeword interval (two bits for the
(7,1/2) code) and between these intervals varies according to

θk+1 = θk + Uk (18)

where θk = θ(2kT ) and where U1, U2, · · · are independent identically distributed (i.i.d.) zero-mean Gaus-
sian random variables with variance σ2

θ . Assuming known data and that the observable is the imaginary
part of the correlation output in Eq. (9), except that for the rate-1/2 code we are now integrating over
two bits,

Yk = 2A2T sin
(
θk − θ̂k|k−1

)
+ Vk ≈ 2A2T

(
θk − θ̂k

)
+ Vk, (19)

where θ̂k|k−1 is the estimate of θk computed from observables Y1, · · · , Yk−1, and where V1, V2, · · · are i.i.d.
zero-mean Gaussian random variables with variance 2N0A

2T and are independent of U1, U2, · · ·. The
goal is to determine the following quantities:

θ̂k|k
4= E [θk|Y1, · · · , Yk]

θ̂k+1|k
4= E [θk+1|Y1, · · · , Yk]

Σ̂k|k−1
4= Var (θk|Y1, · · · , Yk−1)

Σ̂k|k
4= Var (θk|Y1, · · · , Yk)
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By the orthogonality principle, θ̂k|k as defined above minimizes the mean-squared error, E‖θk − θ̂k|k‖2.
The solution is given by (see, e.g., [7, pp. 292–293])

θ̂k|k = θ̂k|k−1 +
Σk|k−1Yk

2A2TΣk|k−1 + N0

θk+1|k = θ̂k|k

Σk|k =
Σk|k−1N0

2A2TΣk|k−1 + N0

Σk+1|k = Σk|k + σ2
θ

with the initialization θ̂1|0 = E[θ1] = π (assuming θ1 is uniform on [0, 2π)) and Σ1|0 = Var[θ2
1] = σ2

θ .

V. Nonjoint Receiver–Decoder Performance

The performance of a nonjoint phase-tracking and decoding system would be quite bad for a suppressed-
carrier signal in a high phase-noise environment and would result in a lopsided comparison with the joint
receiver–decoder. However, using the same total power, the performance of a nonjoint system can be
improved by reallocating power to a residual carrier.

The amount of power to reallocate to the residual carrier is chosen as that which minimizes the bit-error
rate, given by [3]

Pb =
∫ π/2

−π/2

f

(
Eb

N0
cos2 φ

)
pφ(φ)dφ =

∫ π/2

−π/2

f

(
Pt sin2 β

N0Rd
cos2 φ

)
pφ(φ)dφ (20)

where f(·) is the baseline BER versus Eb/N0 performance when the phase is known exactly, pφ(φ) is the
probability density function of the phase error, φ, given by

pφ(φ) =

exp

(
cos φ

σ2
φ

)
∫ π/2

−π/2

exp

(
cos ψ

σ2
φ

)
dψ

, |φ| ≤ π

2
(21)

and σ2
φ is the phase-error variance of the receiver. Assuming that a subcarrier is used to move the

modulation sidebands away from the residual carrier, and a second-order underdamped PLL is used to
track the frequency-flicker-dominated phase, the phase-error variance is given by

σ2
φ = σ2

AWGN + σ2
phase noise ≈

BLN0

Pt sin2 β
+

kS3

B2
L

(22)

with k = 8.7. If sideband data aiding is used, the phase-error variance may be lower, but we shall not
consider this case in this article. The loop bandwidth, BL, is optimized by taking the derivative of
Eq. (22) with respect to BL and setting it equal to zero, which gives
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Bopt
L =

(
2kS3(sin2 β)

Pt

N0

)1/3

(23)

After plugging Eq. (23) into Eq. (22) and then Eq. (21) and, finally, Eq. (20), the error rate is expressed
as a function:

Pb = Pb

(
Pt

N0Rd
, β

)

For a fixed Pt/(N0Rd), the β that minimizes Pb is declared the optimal modulation index, and the
resulting BER performance and phase-error variance are reported.

The method above is essentially the method used by Shambayati,4 approached from another direction.
In Shambayati’s method, the minimum Pt/N0 is found for a given Rd and fixed error rate.

VI. Performance Simulations

The joint receiver–decoder with PLL phase tracking was implemented in C. For each data point, 10,000
errors or 10,000,000 information bits, whichever came first, were simulated. To simplify the simulations,
we assume perfect timing synchronization, no pulse spreading, and AWGN. The decision statistics are
outputs of an MF implemented in complex baseband, as in Eq. (9). Soft-decision decoding is used.
Coarser soft-decision quantization more typical of the high-speed DSN receivers will perform slightly
worse. Table 2 lists the parameters used in the simulations. The nonjoint results are from a spreadsheet,5

using the method in Section V.

Time constraints did not allow simulations for the Kalman filter or MAP algorithms, which are ex-
pected to perform about the same or slightly worse than the PLL.

Figures 8 through 10 show BER performance and phase-error variance performance for phase-noise
levels of −10.58, −1.55, and 7.48 dB rad2/Hz, respectively. Loosely speaking, these represent harsh,
very harsh, and extremely harsh phase-noise environments. In these figures, the known phase and joint
receiver–decoder curves are for a suppressed-carrier signal, where Pt/(N0Rd) = Eb/N0. The nonjoint
receiver operates on a signal of the same total power, a fraction of which is allocated to a residual carrier
in a manner that optimizes BER versus Pt/N0 performance.

Because a Reed–Solomon (RS) outer code is usually used with the inner NASA standard (7,1/2) code,
the BER region of interest is in the vicinity of 10−3 to 10−1. For example, when using an RS (255,223)
outer code, a bit-error rate of 0.01 from the inner code will result in an end-to-end BER of less than 10−6.
As can be seen from Figures 8 through 10, the joint receiver–decoder saves 3, 3, and 4.25 dB at a BER
of 0.01 and phase-noise levels of −10.58, −1.55, and 7.48 dB rad2/Hz, respectively.

The phase-error variances for the joint and nonjoint receiver–decoders are shown in Figures 8(b),
9(b), and 10(b). The performance of the nonjoint receiver is a function of the carrier-power-to-noise
ratio, Pc/N0. The flat region is one in which Pc/N0 is constant, a consequence of the requirement that a
loop SNR of 10 dB must be maintained.6 In Fig. 8(b), we see that, at about 4 dB, all power in the nonjoint

4 S. Shambayati, “Preliminary Results on Optimum Settings for BVR Tracking of Voyager 1,” JPL Interoffice Memorandum
3315-95-SS08 (internal document), Jet Propulsion Laboratory, Pasadena, California, December 1995.

5 S. Shambayati, personal communication, Communications Systems and Research Section, Jet Propulsion Laboratory,
Pasadena, California, May 1999.

6 Ibid.
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Table 2. Properties used in the high phase-noise BPSK simulations.

Parameter Value

Encoder

Code Convolutional

Constraint length 7

Code rate 1/2

Generator polynomials 133 171 (D0 = least-significant bit)

Number of trellis states 64

Differential encoding Yes

Modulation

Amplitude 1.000000

Bit period (coded bit) 0.012500 s

Data rate 40 b/s

Carrier frequency 0 Hz

Initial carrier phase 0.000000 rad

Modulation index (angle) 1.570796 rad (90 deg)

Pulse shape Rectangular

Channel

Channel type AWGN

Eb/N0 1–15 dB

Phase noise

Type Frequency-flicker dominated

PSD (one-sided) 0.175/f3, 1.4/f3, 11.2/f3 rad2/Hz

Increment variance 5.30× 10−4, 4.24× 10−3,
3.39× 10−2 (between samples)

Power at 1-Hz offset −10.58, −1.55, 7.48 dB rad2/Hz

Phase stored modulo 2π Yes

Length of phase filter 4096

Samples per code bit 1, 4 (Fs = 80 or 320)

Receiver–decoder

Phase-tracking method Second-order standard
underdamped PLL

PLL bandwidth 5–60 Hz [optimized by Eq. (14)]

Decoding delay 100

Number of errors to simulate 10,000 or 10 million bits

system is devoted to the carrier, i.e., Pt = Pc. The joint receiver–decoder operates on a suppressed-carrier
signal, Pc = 0, and slowly approaches the performance of a CW signal as Pt/(N0Rd) increases.

As can also be seen in Figures 8(a), 9(a), and 10(a), the gain of the joint approach over a nonjoint
approach decreases as Pt/(N0Rd) increases. The reason for this is unknown, but may possibly be the
way in which the PLL for the joint receiver–decoder is implemented. Two approaches were used—one in
which phase samples were generated once per symbol and one in which the phase samples were generated
four times per symbol. For the multiple-samples-per-symbol case, the joint receiver–decoder also pro-
duced phase updates four times per symbol. For a phase-noise level of −10.58 dB rad2/Hz and low SNR,
the multiple updates per symbol were slightly worse than a single update per symbol, representing the fact
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Fig. 8.  A comparison of (a) BER performance and (b) phase-error
performance, for joint and nonjoint receiver-decoders, when the phase-noise
level is -10.58 dB rad2/Hz at a 1-Hz offset.

that the PLL is tracking fluctuations due to AWGN, not true phase changes. On the other hand, at
7.48 dB rad2/Hz, the multiple updates per symbol help quite a bit.

There is a cross-over point for which one method works better than the other. This is illustrated in
Fig. 11 for a phase-noise level of −1.55 dB rad2/Hz. As can be seen, below approximately 7 dB, a single
phase update per symbol works better. Above 7 dB, four updates per symbol work better. Thus, there is
some amount of PLL optimization, beyond optimizing the loop bandwidth, BL, that can yield improved
results. We expect that, when the phase tracking is optimized, the joint receiver–decoder performance
curve will have the same slope as the baseline performance curve with no phase error.

VII. Conclusions

This article presented a method to jointly estimate phase and data from a convolutionally coded
BPSK signal with random phase noise and AWGN. The joint receiver–decoder successfully decodes fully
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Fig. 9.  A comparison of (a) BER performance and (b) phase-error
performance, for joint and nonjoint receiver-decoders, when the phase-noise
level is -1.55 dB rad2/Hz at a 1-Hz offset.

suppressed carrier signals in harsh phase-noise environments. A complete description was given of the
software implementation, including the generation of statistically accurate phase-noise samples.

Numerical results were given for the NASA standard (7,1/2) convolutional code and frequency-
flicker-dominated phase noise. Simulations indicated that for phase-noise levels of −10.58, −1.55, and
7.48 dB rad2/Hz at a 1-Hz offset—all three are harsh phase-noise environments—a data rate of 40 b/s,
and a BER of 0.01, that the joint receiver–decoder saves 3 to 4.25 dB of power over a nonjoint approach.
This is so despite operating on a fully suppressed carrier signal instead of the residual signal (with optimal
modulation index) used in the comparisons with the nonjoint receiver–decoder.

It should be emphasized that the nonjoint receiver we use for comparison in this article does not use
sideband data aiding. Gains possible from sideband data aiding would reduce the reported gains of the
joint receiver–decoder.
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Fig. 10.  A comparison of (a) BER performance and (b) phase-error
performance, for joint and nonjoint receiver-decoders, when the phase-noise
level is 7.48 dB rad2/Hz at a 1-Hz offset.

Future work should include a proper study of the optimization of the phase tracking. This includes
development of better tracking loops, the effect of single versus multiple phase updates per symbol,
and methods to combat phase-estimate errors that result from burst decoding errors. Also, there is as
yet no analytic development of performance bounds, which would be very helpful in generating quick
performance estimates. The joint receiver–decoder presented here can also be extended to quadrature-
phase-shift keying (QPSK) and offset quadrature-phase-shift keying (OQPSK) signaling, and to joint
symbol synchronization, phase tracking, and decoding.
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Fig. 11.  A comparison of joint receiver-decoder phase tracking for one and
four phase-estimate updates per symbol. For low Pt / (N 0Rd ), more updates
per symbol results in tracking of unwanted AWGN effects on the observed
phase, while, for high Pt / (N 0Rd ), it results in better tracking of the true phase.
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Appendix A

Relationship of S(f ) to L (f )

Oscillator phase noise characteristics are also commonly specified by L(f), which is defined as the ratio
of the phase-noise power in a 1-Hz-bandwidth sideband to the total signal power, at an offset of f Hz
from the carrier frequency. The normalized phase-noise power L(f) is related to S(f) in the following
way [2]: let s(t) be a phase-noisy signal of the form

s(t) = A exp [j(θ(t) + φ(t))] (A-1)

where θ(t) is the phase of an oscillator (plus angle modulation, if any) and where φ(t) is the phase
variation due to phase noise. The “small angle condition” holds at frequency f if the phase fluctuations
occurring at rates f Hz or faster are small compared to one rad, i.e.,

∫ ∞
f

Sφ(f ′)df ′ << 1 rad2 (A-2)

If this condition holds, then sinφ(t) ≈ φ(t) and cos φ(t) ≈ 1, and we may rewrite Eq. (A-1) as

s(t) = Aejθ(t) × (cos φ(t) + j sinφ(t)) ≈ Aejθ(t)(1 + jφ(t)) = Aejθ(t) + Aφ(t)ej(θ(t)+π/2) (A-3)

The first term is the signal with no phase noise present, and its power is A2. The second term is the
phase-noise contribution, and its average power in a 1-Hz bandwidth centered at frequency f is

∫ f+(1/2)

f−(1/2)

A2

(
Sφ(f)

2

)
df ≈ A2Sφ(f)

2
(A-4)

assuming Sφ(f) does not vary much within the integration region. The factor of 1/2 is introduced in
Eq. (A-4) because Sφ(f) is a one-sided power spectral density. Thus, the ratio of the noise power in the
1-Hz sideband to the signal power, in dB, is approximately [2,3]

L(f) ≈ 10 log10

(
A2Sφ(f)/2

A2

)
= 10 log10

(
Sφ(f)

2

)
(A-5)

There are a couple of areas of confusion regarding this formulation. First, the units of L(f) are usually
given as dBc/Hz, which indicates the number of decibels the phase-noise power is below the carrier power.
This is somewhat of a misnomer because, for example, a suppressed-carrier modulated signal might have
very little power at the carrier frequency. It is the decibels below the total signal power that L(f)
measures, not the decibels below the carrier power [2]. Second, the small-angle condition does not always
hold, particularly for the high phase-noise cases this article considers. The approximation in Eq. (A-5) is
not valid in those cases.

For these reasons, this article does not refer to L(f) explicitly; instead, phase noise is given by the
right-hand side of Eq. (A-5) and specifying the type of phase noise, e.g., frequency-flicker-dominated
phase noise of the form 1/f3. The units of 10 log10(S(f)/2) are dB rad2/Hz. When the small-angle
condition holds, this is the same as specifying the phase noise in dBc/Hz and using L(f).
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Appendix B

Computer Generation of Phase Noise

I. The Basic Idea

The basic idea of the simulation is to put a sequence of i.i.d. Gaussian random deviates through a
finite impulse response (FIR) filter, thereby changing the white PSD into the desired PSD. It is easier to
describe this process in continuous time first, and then to describe how this is approximated in discrete
time.

In continuous time, a random process X(t) with one-sided PSD SXX(f) = N0 is the input to a linear
filter with transfer function H(f). The output Y (t) has PSD SY Y (f) = |H(f)|2SXX(f) = |H(f)|2N0,
and, thus, any H(f) that satisfies |H(f)|2 = Sdesired(f)/N0 will result in Y (t) having the desired spectrum.
In particular, H(f) may be chosen real, which gives H(f) =

√
[Sdesired(f)]/N0. The impulse response is

given by the inverse Fourier transform:7

h(t) =
∫ ∞
−∞

√
Sdesired(f)

N0
e−2πjftdf (B-1)

The discrete impulse response is a sampled version of the continuous version, hk
4= h(tk), where

tk = k∆ are the sampling times and ∆ = 1/Fs is the sampling interval. The relationship between hk and
Hn is given by the discrete Fourier transform [or fast Fourier transform (FFT)], defined by

hk
4=

1
N

N−1∑
n=0

Hne−2πjkn/N (B-2)

Hn
4=

N−1∑
k=0

hke2πjkn/N (B-3)

One can demonstrate8 that ∆Hn ≈ H(fn) for n = −N/2, · · · , N/2, where fn = n/(N∆), provided that
(1) h(t) ≈ 0 outside of (0, (N − 1)∆) and (2) H(f) ≈ 0 for all |f | > Fs/2. Furthermore, Hn is periodic
with period N . Rather than letting n vary between −N/2 and N/2, it is customary when using the
FFT to vary n from 0 to N − 1. In this way, hk and Hn have the same set of indices, 0, · · · , N − 1.
In the frequency domain, the zero frequency corresponds to n = 0, positive frequencies correspond to
1 ≤ n ≤ N/2− 1, and negative frequencies correspond to N/2 ≤ n ≤ N − 1. The value N/2 corresponds
to both Fs/2 and −Fs/2.

7 Usually the inverse Fourier transform is defined as h(t) =
∫∞
−∞H(f)e2πjftdf , which differs from Eq. (B-1) by the negative

sign in the exponent. This is a small difference, however, and this less common definition is used in some standard
references, e.g., [8,9].

8 J. Hamkins, “Remarks on Noise Generation,” JPL Interoffice Memorandum 331.98.12.007 (internal document), Jet Propul-
sion Laboratory, Pasadena, California, December 1998.
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II. The FFT Size and the Sample Rate

The proper FFT size N to use is that which is sufficient to obtain the dynamic range in the PSD at
the output. For phase noise of the form S(f) = c/fα, the minimum FFT size is given by

N = 2× 10(A−B)/(10α)

where A and B are the desired upper and lower dB rad 2/Hz at which the simulation is desired to operate.
The sample rate must be at least twice as high as the frequency for which the PSD is B dB rad 2/Hz.

As an example, suppose we want to generate a frequency-flicker-dominated phase noise with
−20 dB rad 2/Hz at a 1-Hz offset, and we want the simulation to be accurate within the entire dynamic
range from 0 dBc/Hz down to −100 dB rad 2/Hz. This implies 10 log10(S(1)/2) = −20, or S(1) = 0.02
and S(f) = 0.02/f3. The frequency for which 10 log10(S(f)/2) = −100 is f = 108/3 = 464 Hz. By the
Nyquist criterion, the simulation should produce outputs at a sample rate at least twice that frequency, or
928 Hz. At the other extreme, 10 log10(S(f)/2) = 0 is satisfied when f = (0.02)1/3 = 0.27 Hz. Therefore,
the FFT should have at least 1/0.27 frequency bins per Hz, or roughly 928/0.27 = 3420 bins overall.
FFTs work much faster when their sizes are a power of two, so a value of 4096 could be used.

III. The FIR Coefficients

An initialization routine is used to define the impulse response of an FIR filter, using the following
method. Beginning with the continuous-time transfer function H(f) =

√
Sdesired(f)/N0, the approxima-

tion Hn ≈ (1/∆)H(fn) is used to initialize the discrete-time transfer function. Then, for each odd n, we
multiply Hn by −1. This does not affect the PSD of the filter output, because the PSD is a function of
the magnitude of the transfer function; however, it has the beneficial effect of shifting the largest FIR
coefficients of the impulse response towards the middle (k = N/2) and away from the tails (k = 0 and
k = N − 1).9 The FIR coefficients are computed from Hn by taking the inverse FFT, as defined in
Eq. (B-3).

The method does not guarantee that the impulse response tends to zero at the tails. If the tails do
not tend to zero, the generated samples will tend to not have the desired PSD. To combat this problem,
we subtract off the DC part of the impulse response, i.e., subtract h0 from every impulse coefficient
h0, · · · , hN−1. The FFT of this modified impulse response has the same H1, · · · , HN−1 as before, and only
the zero-frequency H0 is different. This is a reasonable modification; from the discussion in Section I, we
know H0 cannot conform to the frequency-flicker-type noise because it would have to be infinite to do so.
Thus, by assigning the zero-frequency-response H0 exactly right, one can guarantee that hk goes to zero
at the tails. Without knowing a priori what this value of H0 is, we can assign an arbitrary value to H0,
take the inverse FFT, and subtract off the DC part h0 from all the coefficients h0, · · · , hN−1.

IV. The Gaussian Random Inputs

Gaussian random deviates may be generated from a uniform deviate generator by using the
Box–Muller method [9]. Namely, if x1 and x2 are independent and uniformly distributed on (0, 1),
then y1 =

√
−2 lnx1 cos(2πx2) and y2 =

√
−2 lnx1 sin(2πx2) are i.i.d. zero-mean, unit-variance normal

deviates.

9 Ibid.
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V. The FIR Output

A. With a Convolution

A sequence of i.i.d. Gaussian random deviates is generated and used as input to the filter. The ith
filter output is determined by a convolution:

yk =
N−1∑
n=0

hnxk−n (B-4)

The first N filter outputs are thrown out (y1, · · · , yN ), to give time for a full input sequence to feed into
the FIR. After initialization, this method requires N multiplications and N − 1 additions per output
sample, i.e., a computational complexity of O(N) per output sample.

B. With an FFT and the Overlap-Add Method

For large filter lengths, a convolution can be time consuming. For example, each point on the per-
formance curves in this article was based on the simulation of 80 million phase-noise samples. (The
10 million information bits result in 20 million coded bits, each of which was sampled up to four times.)
A more efficient method than direct convolution is to multiply the discrete filter transfer function Hn

by the FFT of the first N filter inputs, and then to take the inverse FFT. Appropriate zero padding is
necessary for this to work properly, and the beginning and ending outputs must be thrown out. This will
generate N/2 data points.

One disadvantage of this method, however, is that it does not allow for simulations of arbitrary lengths,
because there is a practical limit to the size of an FFT that can be performed. This problem may be
overcome by using a smaller FFT size and stitching together multiple data sets in the appropriate way.
This is known as the overlap-add method of generating filter outputs. It is described in more detail in
[6, p. 558] and [9]. To quote from [9, p. 543],

If your data set is so long that you do not want to fit it into memory all at
once, then you must break it up into sections and convolve each section separately.
Now, however, the treatment of end effects is a bit different. You have to worry not
only about spurious wrap-around effects, but also about the fact that the ends of
each section of data should have been influenced by data at the nearby ends of the
immediately preceding and following sections of data, but were not so influenced
since only one section of data is in the machine at a time. . .. [One solution is the
overlap-add method.] Here you don’t overlap the input data. Each section of data is
disjoint from the others and is used exactly once. However, you carefully zero-pad it
at both ends so that there is no wrap-around ambiguity in the output convolution or
deconvolution. Now you overlap and add these sections of output. Thus, an output
point near the end of one section will have the response due to the input points at
the beginning of the next section of data properly added in to it, and likewise for
an output point near the beginning of a section, mutatis mutandis.

When computed with FFTs, the computational complexity of the FIR output is dominated by the
FFT calculations, which take O(N log N) time. Thus, for each point, only O(log N) time is needed, a
substantial savings over the O(N) required for convolution computations. Table B-1 indicates the time
savings in seconds, based on computer simulations.
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Table B-1. Seconds needed to generate 10 million
FIR outputs on a 333-MHz Pentium II, for various
FIR lengths N.

FFT Convolution
Speed up

N required required
factor

time, s time, s

64 33.0 137 4.2

256 34.4 515 15.0

1,024 59.1 1,076 18.2

4,096 65.7 4,253 64.7

16,384 102 179,502 176
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